domingo, 16 de marzo de 2014

ARQUITECTURA TCP/IP

Es una completa arquitectura de red que incluye varios de ellos, apilados en capas. Es sin lugar a dudas, la más utilizada del mundo, ya que es la base de comunicación de Internet. 

En el año 1973, el DDEU (Departamento de Defensa de Estados Unidos) inició un programa de investigación para el desarrollo de tecnologías de comunicación de redes de transmisión de datos. 

El objetivo fundamental era desarrollar una red de comunicación que cumpliera las siguientes características:- Permita interconectar redes diferentes. - Sea tolerante a fallos. - Permita el uso de aplicaciones diferentes: transferencia de archivos, etc.

MODELO DE REFERENCIA OSI


 El modelo OSI (Open System Interconnection o Interconexión de Sistemas Abiertos) está basado en una propuesta establecida en el año 1983 por la organización internacional de normas ISO (ISO 7498) como un avance hacia la normalización a nivel mundial de protocolos. El modelo se llama modelo de referencia OSI de la ISO, puesto que se ocupa de la conexión de sistemas abiertos, esto es, sistemas que están preparados para la comunicación con sistemas diferentes. Lo llamaremos modelo OSIOSI emplea arquitectura en niveles con el fin de dividir los problemas de interconexión en partes manejable. ¿Cómo llegó la ISO, partiendo desde cero, a definir una arquitectura a siete niveles de esas características?

 Los principios teóricos en los que se basaron para la realización de OSI fueron los siguientes: - Cada capa de la arquitectura está pensada para realizar una función bien definida. - El número de niveles debe ser suficiente para que no se agrupen funciones distintas, pero no tan grande que haga la arquitectura inmanejable. - Debe crearse una nueva capa siempre que se necesite realizar una función bien diferenciada del resto.- Las divisiones en las capas deben establecerse de forma que se minimice el flujo de información entre ellas, es decir, que la interfaz sea sencilla. - Permitir que las modificaciones de funciones o protocolos que se realicen en una capa no afecten los niveles contiguos. - Utilizar la experiencia de protocolos anteriores. Las fronteras entre niveles deben situarse donde la experiencia ha demostrado que son convenientes. - Cada nivel debe interaccionar únicamente con los niveles contiguos a él (es decir, el superior y el inferior).- La función de cada capa se debe elegir pensando en la definición de protocolos estandarizados internacionalmente.

 OSI está definido más bien como modelo, y no como arquitectura. La razón principal es que la ISO definió solamente la función general que debe realizar cada capa, pero no mencionó en absoluto los servicios y protocolos que se deben usar en ellas. Esto quiere decir que el modelo OSI se definió antes de que se diseñaran los protocolos.

Las funciones encomendadas a cada una de las capas OSI son las siguientes: Nivel físico: tiene que ver con la transmisión de dígitos binarios por un canal de comunicación. Las consideraciones de diseño tienen que ver con el propósito de asegurarse de que, cuando un lado envíe un “1”, se reciba en el otro lado como“1”, no como “0”.. Aquí las consideraciones de diseño tienen mucho que ver con la interfaces mecánica, eléctrica y con el medio de transmisión físico que está bajo la capa física. Nivel de enlace: su tarea principal es detectar y corregir todos los errores que se produzcan en la línea de comunicación.

También se encarga de controlar que un emisor rápido no sature a un receptor lento, ni se pierdan datos innecesariamente. Finalmente, en redes donde existe un único medio compartido por el que circula la información, este nivel se encarga de repartir su utilización entre las estaciones. La unidad mínima de datos que se transfiere entre entidades pares a este nivel se llama trama o marco. Nivel de red: se ocupa de determinar cuál es la mejor ruta por la que enviar la información, es decir, el camino más corto, más rápido, el que tenga menos tráfico, etc.

 Por todo esto, debe controlar también la congestión de la red, intentando repartir la carga entre las distintas rutas. La unidad mínima de información que se transfiere a este nivel se llama paquete. Nivel de transporte: es el nivel más bajo que tiene independencia total del tipo de red utilizada y su función básica es tomar los datos procedentes del nivel de sesión y pasarlos a la capa de red, asegurando que lleguen correctamente al nivel de sesión del otro extremo. A este nivel la conexión es de extremo a extremo.

Nivel de sesión: a este nivel se establecen sesiones (conexiones) de comunicación entre los dos extremos para el transporte de datos. A este nivel se incorporan servicios, como la reanudación de la conversación después de un fallo en la red o una interrupción, etc. Nivel de presentación: a este nivel se controla el significado de la información que se transmite, lo que permite la traducción de los datos entre las estaciones. Por ejemplo, si una estación trabaja con un código concreto y la estación del otro extremo maneja uno diferente, el nivel de presentación es el encargado de realizar esta conversación.

 Para conversaciones confidenciales, este nivel también codifica y en cripta. Nivel de aplicación: es el nivel que está en contacto directo con los programas o aplicaciones informáticas de las estaciones y contiene los servicios de comunicación más utilizados en las redes.

 Como ejemplos de servicios a este nivel se puede mencionar la transferencia de archivos, el correo electrónico, etc. El principal problema de este diseño en lo que se refiere a las capas, es que algunas de ellas están prácticamente vacías (es decir, hay muy pocos protocolos definidos dentro de éstas y a la vez son bastante triviales), mientras que otras están llenas a rebosar. Por ejemplo, las capas de sesión y presentación no se usan en la mayoría de las aplicaciones, mientras que las capas más inferiores están muy saturadas.


Otro problema que tiene OSI es que existen algunas funciones que se repiten en muchas de las capas, lo que hace que muchos servicios y programas estén duplicados. Es muy importante darse cuenta del hecho de que, cuando una entidad recibe datos de su nivel inmediato superior, no sabe qué parte de ellos es cabecera y qué parte son datos reales enviados por los programas que se desean comunicar. 

Cuando los datos llegan al nivel físico de la máquina receptora, se produce justamente el proceso contrario al anterior: cada capa recibe los datos, le quita su cabecera correspondiente y los pasa al nivel superior. El nivel de aplicación de la estación A le pasa los datos puros al programa receptor.

ETHERNET



Desarrollado por la compañía XERTOX y adoptado por la DEC (Digital Equipment Corporation), y la Intel, Ethernet fue uno de los primero estándares de bajo nivel. Actualmente es el estándar mas ampliamente usado. 

Ethernet esta principalmente orientado para automatización de oficinas, procesamiento de datos distribuido, y acceso de terminal que requieran de una conexión económica a un medio de comunicación local transportando trafico a altas velocidades. 

Este protocolo esta basado sobre una topología bus de cable coaxial, usando CSMA/CD para acceso al medio y transmisión en banda base a 10 MBPS. Además de cable coaxial soporta pares trenzados. También es posible usar Fibra Óptica haciendo uso de los adaptadores correspondientes. 


Además de especificar el tipo de datos que pueden incluirse en un paquete y el tipo de cable que se puede usar para enviar esta información, el comité especifico también la máxima longitud de un solo cable (500 metros) y las normasen que podrían usarse repetidores para reforzar la señal en toda la red.

ARCNET



La Red de computación de recursos conectadas (ARCNET, Attached ResourceComputing Network) es un sistema de red banda base, con paso de testigo (token) que ofrece topologías flexibles en estrella y bus a un precio bajo. Las velocidades de transmisión son de 2.5 M bits/seg. ARCNET usa un protocolo de paso de testigo en una topología de red en bus con testigo, pero ARCNET en si misma no es una norma IEEE. En 1977, Data point desarrollo ARCNET y autorizo a otras compañías. En 1981, Standard Microsystems Corporación (SMC) desarrollo el primer controlador LAN en un solo chip basado en el protocolo de paso de testigo de ARCNET. En 1986 se introdujo una nueva tecnología de configuración de chip. ARCNET tiene un bajo rendimiento, soporta longitudes de cables de hasta 2000pies cuando se usan concentradores activos. Es adecuada para entornos de oficina que usan aplicaciones basadas en texto y donde los usuarios no acceden frecuentemente al servidor de archivos. 

Las versiones más nuevas de ARCNET soportan cable de fibra óptica y de par-trenzado. Debido a que su esquema de cableado flexible permite de conexión largas y como se pueden tener configuraciones en estrella en la misma red de área local (LAN Local Área Network). ARCNET es una buena elección cuando la velocidad no es un factor determinante pero el precio si. Además, el cable es del mismo tipo del que se utiliza para la conexión de determínales IBM 3270 a computadoras centrales de IBM y puede que va este colocado en algunos edificios.

ARCNET proporciona una red robusta que no es tan susceptible a fallos como Ethernet de cable coaxial si el cable se suelta o se desconecta. Esto se debe particularmente a su topología y a su baja velocidad de transferencia. Si el cable que une una estación de trabajo a un concentrador se desconecta o corta, solo dicha estación de trabajo se va a abajo, no la red entera. El protocolo de paso de testigo requiere que cada transacción sea reconocida, de modo no hay cambios virtuales de errores, aunque el rendimiento es mucho mas bajo que en otros esquemas de conexión de red.

Método de acceso a la ARCnet.


 ARCnet utiliza un protocolo de bus de token que considera a la red como un anillo lógico. El permiso para transmitir un token se tiene que turnar en el anillo lógico, de acuerdo con la dirección de la tarjeta de interfaz de red de la estación de trabajo, la cual debe fijarse entre 1 y 255 mediante un conmutador DIP de 8 posiciones. 

Cada tarjeta de interfaz de red conoce su propio modo con la dirección de la estación de trabajo a la cual le tiene que pasar la ficha. El moso con la dirección mayor cierra el anillo pasando la ficha al modo con la dirección menor.

Arquitectura de Red Digital (DRA)

Esta es una arquitectura de red distribuida de la Digital Equipment Corporation. Se le llama DEC net y consta de cinco capas. Las capas físicas, de control de enlace de datos, de transporte y de servicios de la red corresponden casi exactamente a las cuatro capas inferiores del modelo OSI. La quinta capa, la de aplicación, es una mezcla de las capas de presentación y aplicación del modelo OSI. La DEC net no cuenta con una capa de sesión separada La DEC net, al igual que la ASR de IBM, define un marco general tanto para la red de comunicación de datos como para el procesamiento distribuido de datos. 

El objetivo de la DEC net es permitir la interconexión generalizada de diferentes computadoras principales y redes punto a punto, multipunto o conmutadas de manera tal que los usuarios puedan compartir programas, archivos de datos y dispositivos de terminal remotos. La DEC net soporta la norma del protocolo internacional X.25 y cuenta con capacidades para conmutación de paquetes. Se ofrece un emulador mediante el cual los sistemas de la Digital Equipment Corporación se pueden interconectar con las microcomputadoras de IBM y correr en un ambiente ASR.

 El protocolo de mensaje para comunicación digital de datos (PMCDD) de la DEC net es un protocolo orientado a los bytes cuya estructura es similar a la del protocolo de Comunicación Binaria Síncrona (CBS) de IBM

Características de la Arquitectura



• Separación de funciones. Dado que las redes separa los usuarios y los productos que se venden evolucionan con el tipo, debe haber una forma de hacer que las funciones mejoradas se adapten a la ultima. Mediante la arquitectura de red el sistema se diseña con alto grado de modularidad, de Tercero, en la ASR se utiliza el principio de la independencia de dispositivo, lo cual permite la comunicación de un programa con un dispositivo de entrada / salida sin importar los requerimientos de cualquier dispositivo único. Esto también permite añadir o modificar programas de aplicación y equipo de comunicación sin afectar a otros elementos de la red de comunicación. Cuarto, en la ASR se utilizan funciones y protocolos lógicos y físicos normalizados para la comunicación de información entre dos puntos cualesquiera, y esto significa  que se puede tener una arquitectura de propósito general y terminales industriales de muchas variedades y un solo protocolo de red. La organización lógica de una red AS, sin importar su configuración física, se divide en dos grandes categorías de componentes: unidades direccionales de red y red de control de trayectoria.

Las unidades de direccionales de red son grupos de componentes de ASR que proporcionan los servicios mediante los cuales el usuario final puede enviar datos a través de la red y ayudan a los operadores de la red a realizar el control de estay las funciones de administración. La red de control de trayectoria provee el control de enrutamiento y flujo; el principal servicio que proporciona la capa de control del enlace de datos dentro de la red de control de trayectoria es la transmisión de datos por enlaces individuales. La red de control de trayectoria tiene dos capas: la capa de control de trayectoria y la capa de control de enlace de datos. El control de enrutamiento y de flujo son los principales servicios proporcionados por la capa de control de trayectoria, mientras que la transmisión de datos por enlaces individuales es el principal servicio que proporciona la capa de control de enlace de datos.

 Una red de comunicación de datos construida con base en los conceptos ARS consta de lo siguiente.
•Computadora principal
•Procesador de comunicación de entrada (nodo intermedio)
•Controlador remoto inteligente (nodo intermedio o nodo de frontera)
•Diversa terminales de propósito general y orientado a la industria (nodo terminal o nodo de grupo)

•Posiblemente redes de are local o enlaces de microcomputadora o microcomputadora.

ARQUITECTURA DE REDES

La arquitectura es el “plan” con el que se conectan los protocolos y otros programas de software. Estos son benéficos tanto para los usuarios de la red como para los proveedores de hardware y software. Son conexiones directas entre dos computadoras, sin embargo también pueden conectarse a través de grandes redes que permiten a los usuarios intercambiar datos, comunicarse mediante correo electrónico y compartir recursos, por ejemplo , impresoras. También es una configuración de bus, los ordenadores están conectados a través de un único conjunto de cables denominado bus.



 Un ordenador envía datos a otro transmitiendo a través del bus la dirección del receptor y los datos. Todos los ordenadores de la red examinan la dirección simultáneamente, y el indicado como receptor acepta los datos. La arquitectura de una red viene definida por tres características fundamentales, que depende de la tecnología empleada para su construcción: 

TOPOLOGÍA: la topología es la organización del cableado.

 MÉTODO DE ACCESO A LA RED: todas las redes que poseen un medio compartido para transmitir la información necesitan ponerse de acuerdo a la hora de enviar información, ya que no pueden hacerlo a la vez. Protocolo de comunicaciones: como ya sabemos son las reglas y procedimientos utilizados en la red para realizar la comunicación.



Existen diferentes niveles de protocolos: Protocolos de alto nivel, definen cómo se comunican las aplicaciones (programas de ordenador). Protocolos de bajo nivel, definen cómo se transmiten las señales por el cable. Entre los protocolos de alto y bajo nivel, hay protocolos intermedios que realizan otras funciones.


DISTRIBUCIONES LOGICAS DE LAS REDES DE COMPUTADORA

Indica el tipo de comunicación que existe entre dos computadoras en un red y se refiere a la forma en cómo se envía la información de un nodo a otro.


Los tipos de comunicación utilizados son:


PUNTO A PUNTO 


Cada uno de los nodos se encuentra comunicado en forma directa con el resto de los elementos de la red, independientemente de la ubicación física o el medio de trasmisión.


La ventaja de esta conexión es que, de esta manera cada uno delos nodos puede compartir sus recursos con el resto de los nodos.





CLIENTE SERVIDOR

Permite a todos los nodos estar conectados directamente con una computadora central denominada “SERVIDOR”, misma que comparte sus recursos con el resto de las computadoras, de tal manera que al recibir una solicitud para el uso de un recurso, el servidor analiza la petición y da respuesta permitiendo o no el uso del recurso.


Estas conexiones garantizan la seguridad de la información, pues esta se encuentra controlada por un solo usuario, que es el encargado de vigilar el servidor.


MAS INFORMACIÓN


http://lluvia123.galeon.com/Tema2.htm








sábado, 15 de marzo de 2014

CLASIFICACIÓN DE LAS REDES

Una red puede recibir distintos calificativos de clasificación en base a distintas taxonomías: alcance, tipo de conexión, tecnología, etc.

Por alcance

·         Red de área personal, o PAN (Personal Area Network) en inglés, es una red de ordenadores usada para la comunicación entre los dispositivos de la computadora cerca de una persona.

·         Red inalámbrica de área personal, o WPAN (Wireless Personal Area Network), es una red de computadoras inalámbrica para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella. El medio de transporte puede ser cualquiera de los habituales en las redes inalámbricas pero las que reciben esta denominación son habituales en Bluetooth.

·         Red de área local, o LAN (Local Area Network), es una red que se limita a un área especial relativamente pequeña tal como un cuarto, un solo edificio, una nave, o un avión. Las redes de área local a veces se llaman una sola red de localización. No utilizan medios o redes de interconexión públicos.

·         Red de área local inalámbrica, o WLAN (Wireless Local Area Network), es un sistema de comunicación de datos inalámbrico flexible, muy utilizado como alternativa a las redes de área local cableadas o como extensión de estas.

·         Red de área de campus, o CAN (Campus Area Network), es una red de computadoras de alta velocidad que conecta redes de área local a través de un área geográfica limitada, como un campus universitario, una base militar, hospital, etc. Tampoco utiliza medios públicos para la interconexión.

·         Red de área metropolitana (metropolitan area network o MAN, en inglés) es una red de alta velocidad (banda ancha) que da cobertura en un área geográfica más extensa que un campus, pero aun así limitado. Por ejemplo, un red que interconecte los edificios públicos de un municipio dentro de la localidad por medio de fibra óptica.

·         Redes de área amplia, o WAN (Wide Area Network), son redes informáticas que se extienden sobre un área geográfica extensa utilizando medios como: satélites, cables interoceánicos, Internet, fibras ópticas públicas, etc.

·         Red de área de almacenamiento, en inglés SAN (Storage Area Network), es una red concebida para conectar servidores, matrices (arrays) de discos y librerías de soporte, permitiendo el tránsito de datos sin afectar a las redes por las que acceden los usuarios.

·         Red de área local virtual, o VLAN (Virtual LAN), es un grupo de computadoras con un conjunto común de recursos a compartir y de requerimientos, que se comunican como si estuvieran adjuntos a una división lógica de redes de computadoras en la cual todos los nodos pueden alcanzar a los otros por medio de broadcast (dominio de broadcast) en la capa de enlace de datos, a pesar de su diversa localización física. Este tipo surgió como respuesta a la necesidad de poder estructurar las conexiones de equipos de un edificio por medio de software, permitiendo dividir un conmutador en varios virtuales.

Por tipo de conexión

Medios guiados

·         El cable coaxial se utiliza para transportar señales electromagnéticas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo y uno exterior denominado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes; los cuales están separados por un material dieléctrico que, en realidad, transporta la señal de información.

·         El cable de par trenzado es una forma de conexión en la que dos conductores eléctricos aislados son entrelazados para tener menores interferencias y aumentar la potencia y disminuir la diafonía de los cables adyacentes. Dependiento de la red se pueden utilizar, uno, dos, cuatro o más pares.

·         La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.

Medios no guiados

·         Red por radio es aquella que emplea la radio frecuencia como medio de unión de las diversas estaciones de la red.

·         Red por infrarrojos, permiten la comunicación entre dos nodos, usando una serie de leds infrarrojos para ello. Se trata de emisores/receptores de ondas infrarrojas entre ambos dispositivos, cada dispositivo necesita al otro para realizar la comunicación por ello es escasa su utilización a gran escala. No disponen de gran alcacen y necesitan de visibilidad entre los dispositivos.

·         Red por microondas, es un tipo de red inalámbrica que utiliza microondas como medio de transmisión. Los protocolos más frecuentes son: el IEEE 802.11b y transmite a 2,4 GHz, alcanzando velocidades de 11 Mbps (Megabits por segundo); el rango de 5,4 a 5,7 GHz para el protocolo IEEE 802.11a; el IEEE 802.11n que permite velocidades de hasta 600 Mbps; etc.

Por relación funcional

·         Cliente-servidor es la arquitectura que consiste básicamente en un cliente que realiza peticiones a otro programa (el servidor) que le da respuesta.
·         Peer-to-peer, o red entre iguales, es aquella red de computadoras en la que todos o algunos aspectos funcionan sin clientes ni servidores fijos, sino una serie de nodos que se comportan como iguales entre sí.

Por tecnología

·         Red Point-To-Point es aquella en la que existe multitud de conexiones entre parejas individuales de máquinas. Este tipo de red requiere, en algunos casos, máquinas intermedias que establezcan rutas para que puedan transmitirse paquetes de datos. El medio electrónico habitual para la interconexión es el conmutador, o switch.

·         Red broad cast se caracteriza por transmitir datos por un sólo canal de comunicación que comparten todas las máquinas de la red. En este caso, el paquete enviado es recibido por todas las máquinas de la red pero únicamente la destinataria puede procesarlo. Las equipos unidos por un concentrador, o hub, forman redes de este tipo.

Por topología física

·         La red en bus se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal obackbone) al cual se conectan los diferentes dispositivos.

·         En una red en anillo cada estación está conectada a la siguiente y la última está conectada a la primera.

·         En una red en estrella las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste.

·         En una red en malla cada nodo está conectado a todos los otros.

·         En una red en árbol los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central.

·         En una red mixta se da cualquier combinación de las anteriores


Por la direccionalidad de los datos

·         Simplex o unidireccional: un equipo terminal de datos transmite y otro recibe.

·         Half-duplex, en castellano semidúplex: el método o protocolo de envío de información es bidireccional pero no simultáneo bidireccional, sólo un equipo transmite a la vez.

·         Full-duplex, o dúplex,: los dos equipos involucrados en la comunicación lo pueden hacer de forma simultánea, transmitir y recibir.


Por grado de autentificación

·         Red privada: es una red que solo puede ser usada por algunas personas y que está configurada con clave de acceso personal.

·         Red de acceso público: una red pública se define como una red que puede usar cualquier persona y no como las redes que están configuradas con clave de acceso personal. Es una red de computadoras interconectados, capaz de compartir información y que permite comunicar a usuarios sin importar su ubicación geográfica

Por grado de difusión

·         Una intranet es una red de ordenadores privados que utiliza tecnología Internet para compartir dentro de una organización parte de sus sistemas de información y sistemas operacionales.

·         Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, garantizando que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial.

Por servicio o función

·         Una red comercial proporciona soporte e información para una empresa u organización con ánimo de lucro.

·         Una red educativa proporciona soporte e información para una organización educativa dentro del ámbito del aprendizaje.

·         Una red para el proceso de datos proporciona una interfaz para intercomunicar equipos que vayan a realizar una función de cómputo conjunta.

Almacenamiento en red


Almacenamiento en red

En la redes medianas y grandes el almacenamiento de datos principal no se produce en los propios servidores sino que se utilizan dispositivos externos, conocidos como disk arrays (matrices de discos) interconectados, normalmente por redes tipo SAN, o NAS. Estos medios permiten centralizar la información, una mejor gestión del espacio, sistemas redundantes y de alta disponibilidad.
Los medios de copia de seguridad suelen incluirse en la misma red donde se alojan los medios de almacenamiento mencionados más arriba, de esta forma el traslado de datos entre ambos, tanto al hacer la copia como las posibles restauraciones, se producen dentro de esta red sin afectar al tráfico de los clientes con los servidores o entre ellos.

Dispositivos de red

Los equipos informáticos descritos necesitan de una determinada tecnología que forme la red en cuestión. Según las necesidades se deben seleccionar los elementos adecuados para poder completar el sistema. Por ejemplo, si queremos unir los equipos de una oficina entre ellos debemos conectarlos por medio de un conmutador o un concentrador, si además hay un varios portátiles con tarjetas de red Wi-Fi debemos conectar un punto de acceso inalámbrico para que recoja sus señales y pueda enviarles las que les correspondan, a su vez el punto de acceso estará conectado al conmutador por un cable. Si todos ellos deben disponer de acceso a Internet, se interconectaran por medio de un router, que podría ser ADSL, ethernet sobre fibra óptica,broadband, etc.

Los elementos de la electrónica de red más habituales son:
·         Conmutador, o switch,
·         Enrutador, o router,
·         Puente de red, o bridge,
·         Puente de red y enrutador, o brouter,

·         Punto de acceso inalámbrico, o WAP (Wireless Access Point),

Protocolos de redes

Existen diversos protocolos, estándares y modelos que determinan el funcionamiento general de las redes. Destacan el modelo OSI y el TCP/IP. Cada modelo estructura el funcionamiento de una red de manera distinta. El modelo OSI cuenta con siete capas muy definidas y con funciones diferenciadas y el TCP/IP con cuatro capas diferenciadas pero que combinan las funciones existentes en las siete capas del modelo OSI.
 Los protocolos están repartidos por las diferentes capas pero no están definidos como parte del modelo en sí sino como entidades diferentes de normativas internacionales, de modo que el modelo OSI no puede ser considerado una arquitectura de red.

Modelo OSI

El modelo OSI (Open Systems Interconnection) fue creado por la ISO y se encarga de la conexión entre sistemas abiertos, esto es, sistemas abiertos a la comunicación con otros sistemas. Los principios en los que basó su creación eran: una mayor definición de las funciones de cada capa, evitar agrupar funciones diferentes en la misma capa y una mayor simplificación en el funcionamiento del modelo en general.


Este modelo divide las funciones de red en siete capas diferenciadas:


Modelo TCP/IP

Este modelo es el implantado actualmente a nivel mundial: fue utilizado primeramente en ARPANET y es utilizado actualmente a nivel global en Internet y redes locales.su nombre deriva de la union de los nombres de los dos principales protocolos que lo conforman: TCP en la capa de transporte e IP en la capa de red. Se compone de cuatro capas:

Otros estándares
Existen otros estándares, más concretos, que definen el modo de funcionamiento de diversas tecnologías de transmisión de datos:


Esta lista muestra algunos ejemplos, no es completa.










Servidores



Son los equipos que ponen a disposición de los clientes los distintos servicios. En la siguiente lista hay algunos tipos comunes de servidores y sus propósitos:

Servidor de archivos: almacena varios tipos de archivo y los distribuye a otros clientes en la red. Pueden ser servidos en distinto formato según el servicio que presten y el medio: FTP, SMB, etc.

Servidor de impresión: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.

Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con el e-mail para los clientes de la red.

Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax, con origen y/o destino una computadora o un dispositivo físico de telefax.

Servidor de telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o Internet, etc. Pueden operan con telefonía IP o analógica.

Servidor proxy: realiza un cierto tipo de funciones en nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente). También «sirve» seguridad; esto es, tiene un firewall (cortafuegos). Permite administrar el acceso a Internet en una red de computadoras permitiendo o negando el acceso a diferentes sitios web, basándose en contenidos, origen/destino, usuario, horario, etc.

Servidor de acceso remoto (RAS, del inglés Remote Access Service): controla las líneas de módems u otros canales de comunicación de la red para que las peticiones conecten una posición remota con la red, responden las llamadas telefónicas entrantes o reconocen la petición de la red y realizan los chequeos necesarios de seguridad y otros procedimientos necesarios para registrar a un usuario en la red. Gestionan las entradas para establecer las redes virtuales privadas, VPN.

Servidor web: almacena documentos HTML, imágenes, archivos de texto, escrituras, y demás material web compuesto por datos (conocidos normalmente como contenido), y distribuye este contenido a clientes que la piden en la red.

Servidor de streaming: servidores que distribuyen multimedia de forma continua evitando al usuario esperar a la descarga completa del fichero. De esta forma se pueden distribuir contenidos tipo radio, vídeo, etc. en tiempo real y sin demoras.

Servidor de reserva, o standby server: tiene el software de reserva de la red instalado y tiene cantidades grandes de almacenamiento de la red en discos duros u otras formas del almacenamiento disponibles para que se utilice con el fin de asegurarse de que la pérdida de un servidor principal no afecte a la red. El servidor de reserva lo puede ser de cualquiera de los otros tipos de servidor, siendo muy habituales en los servidores de aplicaciones y bases de datos.

Servidor de autenticación: es el encargado de verificar que un usuario pueda conectarse a la red en cualquier punto de acceso, ya sea inalámbrico o por cable, basándose en el estándar 802.1x y puede ser un servidor de tipo RADIUS.

Servidores para los servicios de red: estos equipos gestionan aquellos servicios necesarios propios de la red y sin los cuales no se podrían interconectar, al menos de forma sencilla. Algunos de esos servicios son: servicio de directorio para la gestión de los usuarios y los recursos compartidos, Dynamic Host Configuration Protocol (DHCP) para la asignación de las direcciones IP en redes TCP/IP, Domain Name System (DNS) para poder nombrar los equipos sin tener que recurrir a su dirección IP numérica, etc.

Servidor de base de datos: permite almacenar la información que utilizan las aplicaciones de todo tipo, guardándola ordenada y clasificada y que puede ser recuperada en cualquier momento y en base a una consulta concreta. Estos servidores suelen utilizar lenguajes estandarizados para hacer más fácil y reutilizable la programación de aplicaciones, uno de los más populares es SQL.

Servidor de aplicaciones: ejecuta ciertas aplicaciones. Usualmente se trata de un dispositivo de software que proporciona servicios de aplicación a las computadoras cliente. Un servidor de aplicaciones gestiona la mayor parte (o la totalidad) de las funciones de lógica de negocio y de acceso a los datos de la aplicación. Los principales beneficios de la aplicación de la tecnología de servidores de aplicación son la centralización y la disminución de la complejidad en el desarrollo de aplicaciones.

Servidores de monitorización y gestión: ayudan a simplificar las tareas de control, monitorización, búsqueda de averías, resolución de incidencias, etc. Permiten, por ejemplo, centralizar la recepción de mensajes de aviso, alarma e información que emiten los distintos elementos de red (no solo los propios servidores). El SNMP es uno de los protocolos más difundidos y que permite comunicar elementos de distintos fabricantes y de distinta naturaleza.

Y otros muchos dedicados a múltiples tareas, desde muy generales a aquellos de una especifidad enorme.














DISPOSITIVOS DE USUSARIO FINAL

Computadoras personales:  son los puestos de trabajo habituales de las redes. Dentro de la categoría de computadoras, y más concretamente computadoras personales, se engloban todos los que se utilizan para distintas funciones, según el trabajo que realizan.

 Se incluyen desde las potentes estaciones de trabajo para la edición de vídeo, por ejemplo, hasta los ligeros equipos portátiles, conocidos como netbooks, cuya función principal es la de navegar por Internet.

 Las tabletas se popularizaron al final de la primera década del siglo XXI, especialmente por el éxito del iPad de Apple.

Terminal:  muchas redes utilizan este tipo de equipo en lugar de puestos de trabajo para la entrada de datos. En estos sólo se exhiben datos o se introducen. Este tipo de terminales, trabajan unido a un servidor, que es quien realmente procesa los datos y envía pantallas de datos a los terminales.

Electrónica del hogar:  las tarjetas de red empezaron a integrarse, de forma habitual, desde la primera década del siglo XXI, en muchos elementos habituales de los hogares: televisores, equipos multimedia, proyectores, videoconsolas, teléfonos celulares, libros electrónicos, etc. e incluso en electrodomésticos, como frigoríficos, convirtiéndolos en partes de las redes junto a los tradiciones ordenadores.

Impresoras: muchos de estos dispositivos son capaces de actuar como parte de una red de ordenadores sin ningún otro elemento, tal como un print server, actuando como intermediario entre la impresora y el dispositivo que está solicitando un trabajo de impresión de ser terminado.

 Los medios de conectividad de estos dispositivos pueden ser alambricos o inalámbricos, dentro de este último puede ser mediante: ethernet, Wi-Fi, infrarrojo o bluetooth.
 En algunos casos se integran dentro de la impresora y en otros por medio de convertidores externos.


Otros elementos: escáneres, lectores de CD-ROM,

COMPONENTES BÁSICOS DE LAS REDES

Para poder formar una red se requieren elementos: hardware, software y protocolos. Los elementos físicos se clasifican en dos grandes grupos: dispositivos de usuario final (hosts) y dispositivos de red.

 Los dispositivos de usuario final incluyen los computadores, impresoras, escáneres, y demás elementos que brindan servicios directamente al usuario y los segundos son todos aquellos que conectan entre sí a los dispositivos de usuario final, posibilitando su intercomunicación.


El fin de una red es la de interceptar los componentes hardware de una red , y por tanto, principalmente, las computadoras individuales, también denominados hosts, a los equipos que ponen los servicios en la red, los servidores, utilizando el cableado o tecnología inalámbrica soportada por la electrónica de red y unidos por cableado o radiofrecuencia. 

En todos los casos la tarjeta de red se puede considerar el elemento primordial, sea ésta parte de un ordenador, de un conmutador, de una impresora, etc. y sea de la tecnología que sea (ethernet, Wi-Fi, Bluetooth, etc.)


Software

Sistema operativo de red: permite la interconexión de ordenadores para poder acceder a los servicios y recursos. Al igual que un equipo no puede trabajar sin un sistema operativo, una red de equipos no puede funcionar sin un sistema operativo de red. En muchos casos el sistema operativo de red es parte del sistema operativo de los servidores y de los clientes, por ejemplo en Linux y Microsoft Windows.


Software de aplicación: en última instancia, todos los elementos se utilizan para que el usuario de cada estación, pueda utilizar sus programas y archivos específicos. Este software puede ser tan amplio como se necesite ya que pueda incluir procesadores de texto, paquetes integrados, sistemas administrativos de contabilidad y áreas afines, sistemas especializados, correo electrónico, etc.

 El software adecuado en el sistema operativo de red elegido y con los protocolos necesarios permite crear servidores para aquellos servicios que se necesiten.

Hardware

Tarjeta de red

Para lograr el enlace entre las computadoras y los medios de transmisión (cables de red o medios físicos para redes alambicas e infrarrojos o radiofrecuencias para redes inalámbricas), es necesaria la intervención de una tarjeta de red, o NIC (Network Card Interface), con la cual se puedan enviar y recibir paquetes de datos desde y hacia otras computadoras, empleando un protocolo para su comunicación y convirtiendo a esos datos a un formato que pueda ser transmitido por el medio (bits, ceros y unos). 

Cabe señalar que a cada tarjeta de red le es asignado un identificador único por su fabricante, conocido como dirección MAC (Media Access Control), que consta de 48 bits (6 bytes). Dicho identificador permite direccionar el tráfico de datos de la red del emisor al receptor adecuado.

El trabajo del adaptador de red es el de convertir las señales eléctricas que viajan por el cable (ej: red Ethernet) o las ondas de radio (ej: red Wi-Fi) en una señal que pueda interpretar el ordenador.

Estos adaptadores son unas tarjetas PCI que se conectan en las ranuras de expansión del ordenador. En el caso de ordenadores portátiles, estas tarjetas vienen en formato PCMCIA o similares. En los ordenadores del siglo XXI, tanto de sobremesa como portátiles, estas tarjetas ya vienen integradas en la placa base.

Adaptador de red es el nombre genérico que reciben los dispositivos encargados de realizar dicha conversión. Esto significa que estos adaptadores pueden ser tanto Ethernet, como wireless, así como de otros tipos como fibra óptica, coaxial, etc. 

También las velocidades disponibles varían según el tipo de adaptador; éstas pueden ser, en Ethernet, de 10, 100, 1000 Mbps o 10000, y en los inalámbricos, principalmente, de 11, 54, 300 Mbps.

DESCRIPCIÓN BASICA

La comunicación por medio de una red se lleva a cabo en dos diferentes categorías: la capa física y la capa lógica.

La capa física incluye todos los elementos de los que hace uso un equipo para comunicarse con otros equipos dentro de la red, como, por ejemplo, las tarjetas de red, los cables, las antenas, etc.
La comunicación a través de la capa física se rige por normas muy rudimentarias que por sí mismas resultan de escasa utilidad. 

Sin embargo, haciendo uso de dichas normas es posible construir los denominados protocolos, que son normas de comunicación más complejas (mejor conocidas como de alto nivel), capaces de proporcionar servicios que resultan útiles.

Los protocolos son un concepto muy similar al de los idiomas de las personas. Si dos personas hablan el mismo idioma, es posible comunicarse y transmitir ideas.


La razón más importante (quizá la única) sobre por qué existe diferenciación entre la capa física y la lógica es sencilla: cuando existe una división entre ambas, es posible utilizar un número casi infinito de protocolos distintos, lo que facilita la actualización y migración entre distintas tecnologías.